

Abstract — Here we present a current progress towards the
develepment of nucleotide sequence analysis software package
produced as a result of bioinformatics initiative at SFedU. Different
modules included in the package allow to perform wide range of
sophisticated operations including sequence alignment, motif search
and de novo discovery, primer design etc. The particular advantage of
the package modules is the reduced time of task performing coupled
with optimization for memory usage both leading to improved
performance. The latter was reached due to using special data
structures, parallel running, etc. Widely used in bioinformatics
pairwise alignments are represented by two pairwise alignment
algorithms (parallel block and parallel block with optimal memory
usage) adjusted to running on multi-core processors and accelerators.
The performance tests have confirmed that the former one is faster
than Needleman-Wunsch algorithm by ~60% and EMBOSS tool by

This research was supported by project of the Ministry of Education and
Science of Russia №6.703.2014/K «The search of new targets for predictive
diagnostics of the reproductive system diseases». Analytical work was carried
out on the equipment of Center for collective use of Southern Federal
University «High Technology», grant RFMEFI59414X0002.

 B. J. Steinberg is with the Southern Federal University, Institute of
Mathematics, Mechanics and Computer Science, Rostov-on-Don, Russia (e-
mail: borsteinb@mail.ru).

J. M. Abu-Khalil is with the Southern Federal University, Institute of
Mathematics, Mechanics and Computer Science, Rostov-on-Don, Russia (e-
mail: jumana.abukhalil@gmail.com).

M. G. Adigeyev is with the Southern Federal University, Institute of
Mathematics, Mechanics and Computer Science, Rostov-on-Don, Russia (e-
mail: madi@math.sfedu.ru).

A. A. Bout is with the Southern Federal University, Institute of
Mathematics, Mechanics and Computer Science, Rostov-on-Don, Russia (e-
mail: a-bout@yandex.ru).

A. V. Kermanov is with the Southern Federal University, Institute of
Mathematics, Mechanics and Computer Science, and Research Institute for
Plague Control, Rostov-on-Don, Russia (e-mail: av-kermanov@mail.ru).

E. A. Pshenichnyy is with the Southern Federal University, Research
Institute of Biology, Rostov-on-Don, Russia (e-mail:
pshenichniy.eugene@gmail.com).

G. V. Ramanchauskayte is with the Southern Federal University, Institute
of Mathematics, Mechanics and Computer Science, Rostov-on-Don, Russia
(e-mail: galinka@lastbit.com).

A. P. Kroshkina is with the Southern Federal University, Institute of
Mathematics, Mechanics and Computer Science, Rostov-on-Don, Russia (e-
mail: kroshkina.alena@yandex.ru).

A. V. Gutnikov is with the Southern Federal University, Institute of
Mathematics, Mechanics and Computer Science, Rostov-on-Don, Russia (e-
mail: zeratul477@gmail.com).

N. S. Ponomareva is with the Southern Federal University, Institute of
high technology and piezotechnique, Rostov-on-Don, Russia (e-mail:
nsponomareva@sfedu.ru).

A.E. Panich is with the Southern Federal University, Institute of high
technology and piezotechnique, Rostov-on-Don, Russia (e-mail:
panich@sfedu.ru).

T. P. Shkurat is with the Southern Federal University, Research Institute of
Biology, Rostov-on-Don, Russia (e-mail: tshkurat@sfedu.ru).

~30% . The latter one aligns long sequences faster than EMBOSS
Stretcher by 40%. The motif discovery time was decreased tenfold
for some conditions when Gibbs sampling method with truncated
generalized suffix trees was introduced into algortihm. A VP-tree
based approach offered for locating of genome origins of replications
allowed to lower time complexity comparing with the naïve
algorithm.

Keywords— Bioinformatics, Dynamic programming, Suffix tree,
Vp-tree.

I. INTRODUCTION
ioinformatics is an interdisciplinary field where the
close collaboration is required between

mathematicians, computer scientists and biologists. The rapid
growth of data, mostly genomic, due to appearance of high
throughput sequence technologies (HST) demands efficient
algorithms for fast biosequences processing. Such algorithms
are usually based on some sort of smart data structures
optimized for processing very long strings. In this paper we
describe several software tools based on two popular
techniques – dynamic programming and tree-like structures
(generalized truncated suffix tree, vp-tree). Some of the
described tools were presented in [40] and are available via
web interface at mmcs.sfedu.ru/bio/ (Russian version).

II. SEQUENCE ALIGNMENTS

A. Problem Definition
One of the most important bioinformatics problems is

nucleotide sequence alignments [41],[42]. Global alignment
is applied for the analysis of conservative parts of sequences,
for pinpointing sequence relations and usually is the basic step
in molecular phylogenetics inference [1]. The problem of
pairwise global alignment can be stated as follows [2]: given a
pair of sequences, build a two-row matrix such that the rows
contain the characters of the sequences in order, interspersed
with some spaces. Each alignment is assigned a numerical
characteristic called 'score'. The score reflects the degree of
similarity of the sequences. The problem is to build a
maximum score alignment. The definition of the pairwise local
alignment problem is essentially similar to the definition of
global alignment, but the goal is to find a pair of substrings,
one in each sequence, that maximizes the score. Local
alignment is used for detection of similar fragments within
functionally related sequences. A number of dynamic
programming algorithms have been designed to find global
(Needleman-Wunsch algorithm [3]) or local alignments (Goad
and Kanehisa [4], Sellers [5], Smith and Waterman [3],

B

A package of fast tools for genomic sequence
analysis

 Boris J. Steinberg, Jumana M. Abu-Khalil, Mikhail G. Adigeyev, Andrey A. Bout, Anton V. Kermanov, Evgeny A. Pshenichnyy,
Galina V. Ramanchauskayte, Alena P. Kroshkina, Alexandr V. Gutnikov, Natalia S. Ponomareva, Anatoliy E. Panich

and Tatiana P. Shkurat

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 42

mailto:borsteinb@mail.ru
mailto:jumana.abukhalil@gmail.com
mailto:madi@math.sfedu.ru
mailto:a-bout@yandex.ru
mailto:av-kermanov@mail.ru
mailto:pshenichniy.eugene@gmail.com
mailto:galinka@lastbit.com
mailto:kroshkina.alena@yandex.ru
mailto:zeratul477@gmail.com
mailto:nsponomareva@sfedu.ru
mailto:panich@sfedu.ru
mailto:tshkurat@sfedu.ru

Waterman and Eggert [6], Hall and Myers [7]). There are fast
local alignment algorithms, such as BLAST [8] reducing the
amount of alignment time at the cost of exactness.

B. Global Alignments
Our package includes several alignment procedures. The

basic data structure of dynamic programming algorithms is

similarity matrix. A similarity matrix is an (m+1) by (n+1)
matrix where m and n are the lengths of the sequences to be
aligned. Such model presents serious challenges for efficient
parallel execution on present computers.

The basic idea of our algorithm is to divide the similarity
matrix into blocks and then apply anti-diagonal approach. This
algorithm uses less amount of memory than Needleman-
Wunsch algorithm, as it does not save the similarity matrix as
a whole. Another our procedure for global alignment is based
on [13] and the hyperplanes method [14]. It performs
alignment faster than Hirschberg’s algorithm [3] and uses less
memory than Needleman-Wunsch algorithm. We have
performed a quantitative comparison of the two designed
algorithms and other dynamic programming algorithms for
optimal pairwise global alignment: Needleman-Wunsch,

Hirshberg’s algorithms and Myers and Miller algorithm [15],
as well as other alignment tools: EMBOSS Stretcher [16],
based on rapid modification of Myers and Miller algorithm,
and Ngila [17], implementing a classic Miller and Myers
algorithm. We used an Intel(R) Core(TM) i7 CPU @ 1.6 GHz
computer with 4 GB RAM and 4 cores.

Tables 1 and 2 summarize the results of the tests. The
columns correspond to algorithms: 'H' for Hirshberg’s
algorithm, 'NW' for Needleman-Wunsch algorithm, 'ES' for
Emboss Strecher and 'N' for Ngila algorithm. The columns
'PAOM', 'PBAOM' and 'PB' correspond to procedures within
our package: parallel algorithm with optimal memory usage,
parallel block algorithm with optimal memory usage and
parallel block algorithm respectively.

Table 1. Calculation times for global alignment procedures

Seq.
length
(bp)

Time (s)
H NW ES N PAOM PBAOM PB

2753
2517

0.4 0.2 0.082 0.27 0.3 0.2 0.1

8376
7488

3.3 1.3 0.53 2.41 1.2 0.8 0.5

26803
2

23961
6

2015.7 out of memory 584.9 14109 639.0 362.7 171.1

Table 2. Memory usage for global alignment procedures

Seq. length
(bp)

Memory usage (Mb)
H NW ES N PAOM PBAOM PB

2753
2517

0.7 27.0 3.95 13.9 1.3 1.4 1.4

8376
7488

0.9 240.0 4.2 121.3 2.9 3.0 5.4

268032
239616

11.2 out of
memory

11.6 240.4 66.0 67.0 493.2

The results in Table 1 show that the block algorithm is faster
than Needleman-Wunsch algorithm by ~60% and Hirshberg’s
algorithm by ~80% on tested sets. The table shows that the
block algorithm is faster than EMBOSS Stretcher by ~30%.
The parallel block algorithm with optimal memory usage
aligns long sequences faster than EMBOSS Stretcher by 40% .
Ngila tool is considerably slower comparing with designed

algorithms.
The memory usage comparison is presented in Table 2. The

table shows that the parallel block algorithm with optimal
memory usage requires less amount of memory than
Needleman-Wunsch algorithm. The parallel block algorithm is
more memory efficient than Ngila tool. The designed
algorithms are more memory intensive than EMBOSS

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 43

Stretcher.

C. Local Alignments
The parallel block procedure for local alignment is based on

the Smith-Waterman algorithm combined with block division
and anti-diagonal approach. The Parallel Block Local
Alignment Algorithm with optimal memory usage is a
combination of parallel block local alignment algorithm and
the parallel block global alignment algorithm with optimal
memory usage, discussed above.

We have compared the running time and memory usage of

two presented algorithms and other algorithms for optimal
local pairwise alignment, such as Smith-Waterman and
Waterman-Eggert algorithms, as well as other alignment tools:

EMBOSS [16] Water, which uses the Smith-Waterman
algorithm (modified for speed enhancements), and EMBOSS
Matcher, based on Bill Pearson's LALIGN application. The
experiments were performed on Intel(R) Core(TM) i7 CPU @
1.6 GHz computer with 4 GB RAM and 4 cores. The results of
running time testing are presented in Table 3.

Table 3. Calculation times for local alignment procedures

Seq. length
(bp)

Time (s)
SW PBOM PB EW EM

2753
2517

0.28 0.14 0.06 0.42 0.80

8376
7488

0.61 0.60 0.27 5.05 3.19

268032
239616

out of memory 586.29 231.18 out of memory 2205.91

The columns correspond to the algorithms being compared:

SW – Smith-Waterman, PBOM - Parallel Block algorithm
with optimal memory usage, PB – Parallel Block algorithm,
EW – EMBOSS Water and EM – EMBOSS Matcher. The
table shows that both designed algorithms are faster than
Smith-Waterman algorithm, the parallel block algorithm is
faster than EMBOSS Water by ~95% and Matcher by ~90%
on testing sets. The parallel block algorithm with optimal
memory usage decrease the time of local alignment as
compared to EMBOSS tools by 80%.

Table 4 reflects the memory usage of local alignment
algorithms under study. The results of experiments show that
EMBOSS Water, as Smith-Waterman algorithm, is memory
intensive. The EMBOSS Matcher uses less amount of memory
than Smith-Waterman and parallel block algorithms. However,
Matcher tool is more memory intensive than parallel block
local alignment algorithm with optimal memory usage on short
sequences.

Table 4. Memory usage for local alignment procedures

Seq. length
(bp)

Memory Usage (Mb)

SW PBOM PB EQ EM

2753
2517

53.63 2.09 1.51 56.86 4.19

8376
7488

479.59 3.78 3.92 482.29 4.71

268032
239616

Out of memory 108.15 155.91 Out of memory 21.84

III. TREE-BASED PROCEDURES
A number of problems in bioinformatics can be formulated

in form of seacrhing a genomic sequence for occurences of a
short pattern or looking for frequent patterns under some
conditions. It is known [3] that many of such problems can be
solved efficiently using tree-based data structures. We have

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 44

implemented several efficient procedures base on suffix trees
and vp-trees.

A. Pattern Search
The suffix tree module of presented bioinformatics package

is responsible for solving several problems. Exact and inexact
pattern search, palindrome search and motif discovery are
among them. All of these problems deal with long sequences
of characters of a fixed alphabet ({A,C,G,T} for DNA
sequences). The huge amounts of data in bioinformatics
require special data structures to be used for providing
admissible performance. Among such data structures, suffix
trees are considered as most appropriate. We have
implemented several variants of suffix tree structure. The
experiments show that truncated generalized suffix tree
provides the best performance improvement for pattern search
(both exact and inexact) and motif discovery problem, whereas
for the palindrome search it does not give any speedup [18].
The truncation of tree may be useful for searching specific
subsequences in a set of longer sequences [19]. There are
different approaches for generalized suffix tree implementation
[20], but we have designed a new modification that improves
search time in a few cases. Our approach is based on branch
and bounds method and could considerably reduce space and
time requirements for specific problems. We have proposed a
modification for Ukkonen suffix tree construction algorithm
[21]. Two additional rules were suggested for decreasing both
space and build time. These rules handle cases when maximum
depth is reached for nodes. Our procedure uses special rules
for updating information in leaf nodes as well.

As far as there are a few publicly available implementations,
we have compared the results of our implementation with
several software tools (MUMMER [22], SUDS [23], ERa
[24]). The comparison demonstrates that our procedures either
have a speedup or provide more functionality at the same
speed. As an example, Table 5 shows that for exact pattern
search our procedure has time complexity approximately equal
to Mummer suffix tree procedure which has been declared to
be the fastest tool for this problem [22]. Our suffix tree
procedure has the additional ability of searching occurrences
with mismatches. Results in Table 6 demonstrate some time
parameters for our inexact search procedure.

Table 5. The times for exact pattern search

Sequence
count/ length

Patterns
count/ length

Mummer (s) Our package
(s)

1000/5000 100000/10 3.61 4.48
1000/5000 100000/30 6.82 4.21

1000/100000 100000/10 19.57 25.70
1000/100000 100000/30 23.11 20.21

Table 6. Time parameters for inexact pattern search

Sequence
count/ length

Patterns count/
length

Number
mismatches

Running time
(s)

1000/5000 100/10 2 531.5
1000/5000 100/10 5 981.6

1000/100000 10/30 2 255.1
1000/100000 10/30 12 935.1

B. Motif Discovery
Search of regulatory sequences seems to be one of the most

important task taking into account the data about non-coding
genome regulatory roles obtained due to ENCODE project [9].
This problem could be formulated as a motif discovery
[10]. The motif of choice even if it is known, however, could
be subjected to changes and variation leading to other task of
pattern search (inexact) for relatively huge DNA datasets in
order to find genes joint together into regulatory loop.

Motifs are defined as sequence fragments (patterns) whose
occurrences in a given set of sequences are statistically
significant. The difference between motif discovery and
pattern search problems is that in motif discovery problem the
motif (pattern) is not given but should be found ('discovered')
as the solution.

There are several mathematical models for motif discovery
problem, and different algorithms and software tools tend to
use different models. We have used three models,
implemented in two software tools within the package. One
tool searches a set of biosequences for frequent substrings
under certain conditions (see also [43],[44]). The second tool
is based on a novel model of generalized motifs, which allows
the researcher to account for all or some of the motifs’ features
— similarity (conservativeness), frequency and locality. The
third one searches for dimers — motifs which consist of two
parts (blocks) located at a certain distance from each other.

Frequent motifs

This tool looks for exact (not heuristic) solutions of the
following problem: given a positive set of sequences S = {S1,
…, Sn} and a negative (or control) set C = {C1, …, Cm}, find
all strings (motifs) of length between Lmin and Lmax such that
each of the motifs occurs at least in QP positive sequences and
in no more than QN negative sequences. The motif discovery
module of our package uses truncated suffix tree [37] for
speeding up calculations.

We have compared the performance of our module and the
software tool MERCI [25] which uses similar motif discovery
model. The results are shown in Table 7. All experiments were
performed on dataset with 1000 positive and 10 negative
sequences of length 1000, the variated parameters were
quorums (QP and QN).

Table 7. The times for motif discovery (motif lengths: 10 – 30)

QP QN MERCI (s) Our package
(s)

100 1 130.91 5.92
500 1 36.14 5.85

1000 1 8.46 5.66
100 5 165.21 5.79
500 5 37.57 6.61

1000 5 11.49 5.78
100 10 164.11 6.70

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 45

500 10 34.41 5.91
1000 10 14.12 5.64

Generalized motifs.

Genomic motifs are characterized by several feactures, the
most significant of them are conservativenes (the degree of
similarity of occurrences of the motif), the number of
occurrences of motif in the given biosequences, and the
localization (occurrences of a motif are often localized in a
particular region of DNA) [34]. The models and algorithms
used before for motifs discovery focus just on one or two of
these characteristics.

The authors have developed [35] a novel model which
generalizes all three characteristics of motifs, developed
algorithms and software for searching such generalized motifs.
The model is based on the occurrence indicator of the motive
P in the nucleotide sequence S which is defined as follows:
 OI(P,S) = F({w(j) *
 score(P, substr(S,j,l)): j=1,…, |S|-l+1}) (1)

Where l is the length of the motif P; substr (S, j, l) denotes
the substring S starting at position j and having length l, and w
(j) represents weighting coefficients defining an expected
motif’s localization. The function score(...) quantitatively
evaluates the similarity of a motif to a given substring, and the
function F(...) takes a set of numbers as its argument. It was
shown that the model covers the most commonly used motif
models for appropriate selections for score(…) and F(…).

It is also shown that the developed algorithm can be easily
modified to find dimers - structural motifs consisting of two
parts arranged at a predetermined distance from each other.

For this generalized model for motifs discovery we
developed fast algorithms for motif discovery and evaluation
(calculating occurrence indicator). These algorithms are
independent of the specific choice of model parameters and
use Position Specific Scoring Matrix (PSSM) as a motif
representation. The motif discovery algorithm is based on the
Gibbs sampling method [36] and utilizes truncated generalized
suffix trees [37] for speeding up processing. The algorithm for
calculation occurrence indicator is outlined below.
1. Given the set of sequences {si: i=1,…,k}, ,,s-

i.:i=1,…,k.construct the generalized suffix tree T
truncated to depth l=|p| [37].

2. For a vertex v in the tree T let λ (v) denote the path-label
of v [3], i.e. the concatenation of the labels of arcs along
the path from the root of the tree to the vertex v. For each
leaf v let L (v) denote a list consisting of pairs of the form
(i, j) where i is the sequence’s ID (number), j is the
position of occurrences of λ (v) in the i-th sequence).

3. For each leaf of v in T, calculate values wi(v) as follows:

(,) ()
() ()i

i j L v
w v w j

∈

= ∑

4. For all j calculate Qj(p) (occurrence indicator of p in the
i-th sequence) applying operation F to the set of products
w(v)*score(p, λ (v)) for all the leaves.

In the software implementation formula (1) was represented

in the form:

1
* ((),) * (,) * ()

k

i l j
i

Q S pattern i p f x w vα β µ γ
=

= + + ∑ (2)

Here α, β, γ are parameters specified by the user according
to the biological problem, S is similarity function that
implements a basic algorithm of Gibbs sampling, function f
evaluates a putative motif with respect to its location in the set.
The last summand describes the number of occurrences of a
pattern in a set of DNA sequences.

Computational experiments have shown that the developed
algorithms provide significant acceleration and thus allow
discovering the desired motifs with high sensitivity and
specificity. Comparison of the efficiency of described method
using the truncated suffix tree and the naïve search algorithm
following table illustrates.

Table 8. The times for generalized motif discovery

Sequence
count/ length

Patterns
count/ length

Suffix tree
(ms)

Naive (s)

100/100 100/4 451 1.203
100/100 1000/4 2111 61.191
100/100 10000/4 10523 560.040
100/100 100/8 677 1.080
100/100 1000/8 3507 54.149
100/100 10000/8 19936 538.764

Dimers.
Dimer is a motif consisting of two separate parts called

‘boxes’. The distance between boxes is usually fixed for a
given dimer but can be unknown in advance. Dimers are
special cases of a more general notion of structured of
structural motifs [38].

A structural model of the motif in general can be described
by a pair (m, d) where m is a p-tuple of single models

1(,...,)pm m (the p boxes); d is a (p-1)-tuple of triplets

1 1 1 1min max 1 min max 1((, ,),..., (, ,))
p p pd d d dσ σ

− − − , i.e. (p-1)-
intervals of distance.

We developed and implemented an algorithm based on
Gibbs sampling which discoveries dimers. The formal
statement of the problem is as follows.

Given a set of sequences { , 1.. }js j k= , each consisting of
n nucleotides, we seek for dimers such that the lengths of

boxes (m1 and m2) are equal to 1L and 2L respectively and
the distance between the boxes is within the given limits

mind and maxd .
Let us rewrite the formula (2) for each box of the dimer (t =

1,2) and fixed line z, selected at random during the execution
of the algorithm. Add an additional term, which will be
responsible for assessing the distance between the boxes:

1
* ((),) * (,) * () ()

t

k
t
i L j t

i
Q S pattern i p f x w v g iα β µ γ

=

= + + +∑ ,

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 46

where () ()
tLv pattern iλ = , 0.. 1ti n L= − + , { , 1.. }ja j k=

and { , 1.. }jb j k= are positions of boxes in each sequence at
the current iteration of the algorithm.

One possible choice for the function responsible for the
evaluation of the distance between the boxes is as follows:

1 max 1 min
max min1

1 max 1 min

1 [;]
1()

0 [;]

z z

z z

i b L d b L d
d dg i

i b L d b L d

 ∈ − − − − − += 
 ∉ − − − −

,

1 min 1 max
max min2

1 min 1 max

1 [;]
1()

0 [;]

z z

z z

i a L d a L d
d dg i

i a L d a L d

 ∈ + + + − − += 
 ∉ + + + −

,

Thus, the basic algorithm of Gibbs sampling was modified
for structured motif (dimer) discovery in the set of DNA
sequences by adding the second matrix PSSM Q2,
corresponding to a second box in the structure of the motif.
This model can be generalized to discover structured motifs
with arbitrary number of boxes.

The test results of the algorithm for the model

1 1min max(2, 5)d d= = are in the following table.

Table 9. The times for dimer motif discovery

Sequence
count/ length

Length m1 /
length m2

Count of
iterations

Time(s)

100/100 4/4 1 0.015
100/100 4/4 1000 12.422
100/100 8/8 1 0.027
100/100 8/8 1000 24.268
100/100 16/16 1 0.042
100/100 16/16 1000 41.950
100/100 4/16 1000 36.376
100/100 8/16 1000 30.771
100/100 4/8 1000 29.379

C. Locating Origin of Replication
Search for origin of replication in genome of enterobacteria

is a topical but still unsolved bioinformatics problem [32]. The
problem is to find a region (the origin of replication) within the
specified area of the genome. A putative origine of replication
should contain other sub-sequences (DNA boxes) repeated a
number of times. In addition, an origin of replication should
satisfy the following conditions:

1. Replication origin is located in an AT-rich (GC-poor)
area.

2. Length of replication origin of bacteria ranging from 100
to 1000 bp.

3. The amount of DNA boxes varies from 2 to 5 repeats on
one helix (4 to 10 in two, respectively).

4. The length of DNA boxes varies from 6 to 16 bp.
5. Occurrences of a DNA-box can have up to two

mismatches. For example: ATTGCA, AATGGA are two
occurrences of the same DNA box with 2 mismatches.

We have developed a program for locating putative origins
of replication. This program takes a sequence (genome) and

expected length of DNA boxes, and returns the position of
putative replication origin and the list of putative DNA boxes.

The method for locating origin of replication is based on
locating AT-rich area and then searching for the minimum at
the GC-skew diagram for this area. For a candidate region we
then should determine putative DNA boxes. Since these boxes
are not known in advance, this is the most time-consuming
stage of the algorithm. A naïve algorithm uses brute force to
check all possible substrings of length l. This algorithm has
time complexity O(l•N2). To speed up this operation, we
implemented a procedure based on special data structure VP-
tree [39]. This structure is a special case of metric trees and
allows for fast processing neighbors in a metric space. The
VP-tree based procedure has time complexity O(l•N•logN).

In Table 11 and Table 12 we have compared performances
of our algorithm and the naïve exhaustive search. In Table 12
we present the results of the program in some genomes.

Table 10. Comparing the performance of algorithms relative to the

length of box
Length of DNA
box (symbols)

Exhaustive
search (s) VP-tree (s)

6
7

0.089
0.106

0.106
0.123

8 0.127 0.151
9 0.153 0.166

10 0.173 0.173
11 0.196 0.181
12
13

0.216
0.232

0.194
0.198

14 0.247 0.206
15 0.262 0.221
16 0.439 0.272

Table 11. Comparing the performance of algorithms relative to the

length of the input sequence
Length of sequence

N (symbols)
Exhaustive
search (s) VP-tree (s)

1000 0.153 0.166
2000 0.634 0.505
5000 3.936 2.835

10000 15.689 8.767
20000 62.502 29.283
50000 391.661 143.741

Table 12. The results of the program for the various datasets
Species Found DNA boxes Known DNA boxes

E.Coli TTATCCACA
TGTGGATAA

TTATCCACA
TGTGGATAA

Vibrio cholerae CTTCATGAT
ATCATGAAG

CTTGATCAT
ATGATCAAG

Salmonella
enterica

GGATCCTGG
CCAGGATCC

-

We have compared our program to similar programs:

Oriloc, GC-software, Z-curve, GraphDNA, OriFinder [33].
Almost all analogs only make assumptions based on various

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 47

diagrams, including GC-skew. In Table 13 we compare the
functionality of the programs.

Table 13. Comparing the programs' functionality
Program DNA box Using diagram

Oriloc - GС-skew
TA-skew

CDS-skew
GC-software - GC-skew

TA-skew
DNA-walk

Z-curve

-

(A+G)-(C+T)-skew
(A+C)-(G+T)-skew
(A+T)-(C+G)-skew

Z-curve
GC-skew
AT-skew
AC-skew

(A+G)-(C+T)-skew
(A+C)-(G+T)-skew

GС-skew
TA-skew
RY-skew
MK-skew
GС-skew

GraphDNA -

OriFinder* +

Our program +

* To search for DNA-box user needs to make a guess about its form.

Source code of program for searching for an origin of

replication can be obtained for free from the github:
https://github.com/zeratul47/searching-an-origin-of-
replication-

IV. DEGENERATE PRIMER DESIGN
Degenerate primers are an important component of the

polymerase chain reaction (PCR). It is widely used for various
biotechnological applications. Such approach is useful for
identifying bacteria in metagenomic studies, in particular for
pathogen research [27]. Also, polymerase chain reaction
allows solving various problems in molecular phylogeny
(within defined taxa), for example, search for portions of the
variable domains of proteins from related organisms.
Moreover, PCR can be used for the discovery of new genes
and even of new genomes from samples [45, 46]. Also, for a
successful reaction and getting high quality product we must
take into account a number of biological parameters [47, 48].
Wrong selection of these parameters can negatively affect the
reaction and its results.

We have developed a program for searching pairs of
degenerate primers. The importance and value of the
parameters may vary depending on the task. So, the user is
given the ability to change them and control the search process
at all stages. For example, he/she can choose the algorithm for
minimization of the degeneracy of primers under condition of
covering all input sequences. Another option is searching for
primers covering maximum number of input sequences under
condition that the degeneracy does not exceed the specified
value [28]. To improve performance of each algorithm we
have introduced some heuristics caused by biological aspects
or revealed as a result of testing. The output of the program is

a few primer pairs. This allows the user to choose the most
suitable pair of primers.

V. PLANS FOR FUTURE DEVELOPMENT
Sequences of one species could be searched for SNPs

(single nucleotide polymorphisms) or other type of mutations
allowing creating mutational profile distinguishing species
from another one. It could help in solving problems of
biological classification, for instance, of pathogenic bacteria
[30]. We are in progress with development of a program
making a mutational profile for species or other taxonomic
groups using a database with specific sequence marker defined
computationally or by user. The other program application is
the convenient graphical interface with sequence specific
mutations pointed out against reference.

Suffix tree based procedures suffer from excessive memory
requirements. Thus, reducing memory complexity while
preserving the option of inexact pattern search is an urgent
issue in our plans. There a several approaches addressing this
problem, and ‘compressed suffix tree’ [31] looks promising
enough. In addition, in the next version of the package we plan
to implement switching between truncated tree and sparse
suffix tree according to patterns size. It seems to improve
suffix tree pattern search, both for exact and inexact cases.

REFERENCES
[1] Thompson, C. C., Chimetto, L., Edwards, R. A., Swings, J.,

Stackebrandt, E., Thompson, F. L.: Microbial Genomic
Taxonomy. BMC genomics, 14(1), 913 (2013)

[2] Pevzner, P.: Computational Molecular Biology: an algorithmic
approach. Cambridge, Mass. MIT Press (2000).

[3] Gusfield, D.: Algorithms on Strings, Trees and Sequences.
Cambrige University Press, 556 p. (1997)

[4] Goad, W. B., Kanehisa, M. I.: Pattern Recognition in Nucleic
Acid Sequences I: A General Method for Finding Local
Homologies and Symmetries. Nucl. Acids Res. 10, 247-263
(1982)

[5] Sellers, P. H.: Pattern Recognition in Genetic Sequences by
Mismatch Density. Bull. Math.Biol. 46, 501-514 (1984)

[6] Waterman, M. S., Eggert, M.: A New Algorithm for Best
Subsequence Alignments with Application to tRNA-rRNA
Comparisons. J. Mol. Biol. 197, 723-728 (1987)

[7] Hall, J. D., Myers, E. W.: A Software Tool for Finding Locally
Optimal Alignments in Protein and Nucleic Acid Sequence.
CABIOS 4, 35-40 (1988)

[8] Basic Local Alignment Search Tool,
http://blast.ncbi.nlm.nih.gov/

[9] ENCODE Project, http://www.genome.gov/10005107
[10] McGuire, A. M., Hughes, J. D., Church, G. M.: Conservation of

DNA Regulatory Motifs and Discovery of New Motifs in
Microbial Genomes. Genome Research, 10(6), 744-757.1
(2000)

[11] Okonechnikov, K.; Golosova, O.; Fursov, M.; the UGENE
team: Unipro UGENE: A Unified Bioinformatics Toolkit.
Bioinformatics, 28, 1166-1167 (2012)

[12] Molecular Evolutionary Genetics Analysis,
http://www.megasoftware.net/

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 48

http://www.genome.gov/10005107

[13] Abu-Khalil, Z. M., Morylev, R. I., Steinberg, B. Y.: Parallel
Global Alignment Algorithm with the Optimal Use of Memory.
Modern Problems of Science and Education, 1 (2013)
http://www.science-education.ru/en/107-8139 (in Russian)

[14] Lamport, L.: The Parallel Execution of DO Loops. Commun.
ACM, 83–93 (1974)

[15] Myers, E.W., Miller, W.: Optimal Alignments in Linear Space.
Computer Applications in the Biosciences, 4, 11-17 (1988)

[16] Rice, P., Longden. I., Bleasby A.: EMBOSS: The European
Molecular Biology Open Software Suite. Trends in Genetics, 16,
(6), 276-277 (2000).

[17] Cartwright, R.A.: Ngila: Global Pairwise Alignments with
Logarithmic and Affine Gap Costs. Bioinformatics.
23(11),1427-1428 (2007)

[18] Adigeyev, M.G., Bout, A.A.: Efficiency Analysis of Applying
Suffix Trees for Solving Some Bioinformatics Problems.
Modern Problems of Science and Education. 6,
http://www.science-education.ru/en/106-7418 (2012) (in
Russian)

[19] Schulz, M.H., Bauer, S., Robinson, P.N.: The Generalised k-
Truncated Suffix Tree for Time- and Space-Efficient Searches in
Multiple DNA or Protein Sequences. In: Int. J. Bioinformatics
Research and Applications, 81-95. Inderscience Publishers
(2008)

[20] Bieganski, P., Ned1, J., Cadis, J.V., Retzel, E.E.: Generalized
Suffix Trees for Biological Sequence Data: Applications and
Implementation. In: System Sciences. Proc. of the Twenty-
Seventh Hawaii International Conference, vol. 5 (1994).

[21] Ukkonen, E.: On-line Construction of Suffix Trees.
Algorithmica, 14, 249–260 (1995)

[22] MUMmer, http://mummer.sourceforge.net/
[23] SuDS project, http://www.cs.helsinki.fi/group/suds/cst/
[24] Mansour, E., Allam, A., Skiadopoulos, S., Kalnis, P.: ERA:

Efficient Serial and Parallel Suffix Tree Construction for Very
Long Strings. PVLDB, 5(1), 49-60 (2011)

[25] Vens, C., Rosso, M.N., Danchin, E.G.: Identifying
Discriminative Classification-Based Motifs in Biological
Sequences. Bioinformatics, 27, 1231–1238 (2011)

[26] Lewis, S. M., Coté, A.G.: Palindromes and Genomic Stress
Fractures: Bracing and Repairing the Damage. DNA repair 5.9,
1146-1160 (2006)

[27] Miller, R. R., Montoya, V., Gardy, J. L., Patrick, D. M., Tang,
P.: Metagenomics for Pathogen Detection in Public Health.
Genome medicine, 5(9), 81 (2013)

[28] Linhart, C., Shamir, R.: The Degenerate Primer Design
Problem. Bioinformatics 18.suppl 1, S172-S181 (2002)

[29] Rose, T. M., Henikoff, J.G., Henikoff, S.: CODEHOP
(COnsensus-DEgenerate hybrid oligonucleotide primer) PCR
Primer Design. Nucleic Acids Research 31.13, 3763-3766
(2003)

[30] Nhung, P. H., Shah, M. M., Ohkusu, K., Noda, M., Hata, H.,
Sun, X. S.,Ezaki, T.: The dnaJ Gene as a Novel Phylogenetic
Marker for Identification of Vibrio Species. Systematic and
applied microbiology, 30(4), 309-315 (2007)

[31] Sadakane, K.. Compressed Suffix Trees with Full Functionality. Theo.
Comp. Sys., 41(4), 589-607 (2007).

[32] Pevzner P. Bioinformatics Algorithms: an Active Learning
Approach, USA: Active Learning Publishers, 2014. P.1-46.

[33] Sernova N. V., Gelfand M. S. Identification of replication origins in
prokaryotic genomes // Briefings in Bioinformatics. vol 9. NO 5. 376-
391, 2008.

[34] Sandve G.K. A survey of motif discovery methods in an
integrated framework / G.K. Sandve, F. Drabløs // Biology
Direct. – 2006. – URL
http://www.biomedcentral.com/pubmed/16600018.

[35] Technical report on project ‘Creating a bio-information
technology for research of related organizational scenarios of
non-coding DNA and protein coding DNA in the animal and
human genomes’ 14.740.11.0006 (III). Available:
http://niib.sfedu.ru/themesnir/gosudarstvennyie-
kontraktyi/14740110006

[36] Charles E.Lawrence, Stephen F.Altschul, Mark S.Boguski, Jun
S.Liu, Andrew F.Neuwald, Jon C.Wootton Detecting Subtle
Sequence Signals: a Gibbs Sampling Strategy for Multiple
Alignment// Science. –New Series. – 1993. –Volume 5131. –
Page(s):208-214.

[37] Adigeyev, M.G., Bout, A.A.: Efficiency Analysis of Applying
Suffix Trees for Solving Some Bioinformatics Problems.
Modern Problems of Science and Education. 6,
http://www.science-education.ru/en/106-7418 (2012) (in
Russian)

[38] Laurent Marsan, Marie – France Sagot Algorithms for
Extracting Structured Motifs Using a Suffix Tree with an
Application to Promoter and Regulatory Site Consensus
Identification // Journal of computational biology. – 2000. –
Volume 7. –Numbers 3/4. –Page(s):345-362.

[39] Yianilos P.N. Data Structures and Algorithms for Nearest
Neighbor Search in General Metric Spaces. // SODA '93
Proceedings of the fourth annual ACM-SIAM Symposium on
Discrete algorithms, P. 311-321, 1993.

[40] B. J. Steinberg, J. M. Abu-Khalil, M. G. Adigeyev, S. V.
Avdyakov, A. A. Bout, A. V. Kermanov, E. A. Pshenichnyy, G.
V. Ramanchauskayte, and N. Ponomareva, “SFedU Software
Package for Nucleotide Sequence Analysis.” INASE and CSCC
Conferences, Zakynthos Island, Greece, July 16-20, 2015.
Available :
http://www.inase.org/library/2015/zakynthos/bypaper/MATH/M
ATH-12.pdf

[41] G. Abdel-Azim, M. Ben Othman, and Z. Abo-Eleneen,
“Modified Progressive Strategy for Multiple Proteins Sequence
Alignment”, International Journal of Computers, vol. 5, pp.
270-280. 2011.

[42] L. Chaabane, and M. Abdelouahab, “A Hybrid Method Applied
to Multiple Sequence Alignment Problem”, WSEAS Trans. on
Computers, vol. 14, pp. 465-473. 2015.

[43] Z. S. Zubi, and M. A. Emsaed “Using Sequence DNA Chips
Data to Mining and Diagnosing Cancer Patients”, International
Journal of Computers, vol. 4, pp. 201-214. 2010.

[44] N. Kerdprasop, and K. Kerdprasop, “Recognizing DNA Splice
Sites with the Frequent Pattern Mining Technique”,
International Journal of Mathematical Models and Methods,
vol. 5, pp. 87-94. 2011.

[45] Z. Ma, and T. J. Michailides, “Approaches for eliminating PCR
inhibitors and designing PCR primers for the detection of
phytopathogenic fungi”, Crop Protection Volume 26, Issue 2,
February 2007, pp.145-161.

[46] M. Kotik “Novel genes retrieved from environmental DNA by
polymerase chain reaction: Current genome-walking techniques
for future metagenome applications” Journal of Biotechnology
Volume 144, Issue 2, 26 October 2009, pp.75-82

[47] N. von Ahsen, C. T. Wittwer, and E. Schütz, “Oligonucleotide
melting temperatures under pcr conditions: nearest-neighbor
corrections for Mg2+, deoxynucleotide triphosphate, and

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 49

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=935
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=935
http://docs.google.com/viewer?url=http://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
http://en.wikipedia.org/wiki/Algorithmica
http://mummer.sourceforge.net/
http://www.cs.helsinki.fi/group/suds/cst/

dimethyl sulfoxide concentrations with comparison to
alternative empirical formulas”. Clinical Chemistry 47, vol.11:
1956-1961. 2001

[48] R. Wojciech “Selection of primers for polymerase chain
reaction” Molecular Biotechnology, Volume 3, Issue 2, April
1995, pp. 129-134

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 10, 2016

ISSN: 1998-0140 50

