
  
Abstract — Here we present a current progress towards the 
develepment of  nucleotide sequence analysis software package  
produced as a result of bioinformatics initiative at SFedU. Different 
modules included in the package allow to perform wide range of 
sophisticated operations including sequence alignment, motif search 
and de novo discovery, primer design etc. The particular advantage of 
the package modules is the reduced time of task performing coupled 
with optimization for memory usage both leading to improved 
performance. The latter was reached due to using special data 
structures, parallel running, etc. Widely used in bioinformatics 
pairwise alignments are represented by two pairwise alignment 
algorithms (parallel block and parallel block with optimal memory 
usage) adjusted to running on multi-core processors and accelerators. 
The performance tests have confirmed that the former one is faster 
than Needleman-Wunsch algorithm by ~60% and EMBOSS tool by 
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~30% . The latter one aligns long sequences faster than EMBOSS 
Stretcher by 40%. The motif discovery time was decreased tenfold 
for some conditions when Gibbs sampling method with truncated 
generalized suffix trees was introduced into algortihm. A VP-tree 
based approach offered for locating of genome origins of replications 
allowed to lower time complexity comparing with the naïve 
algorithm. 
 

Keywords— Bioinformatics, Dynamic programming, Suffix tree, 
Vp-tree. 

I. INTRODUCTION 
ioinformatics is an interdisciplinary field where the 
close collaboration is required between 

mathematicians, computer scientists and biologists. The rapid 
growth of data, mostly genomic, due to appearance of high 
throughput sequence technologies (HST) demands efficient 
algorithms for fast biosequences processing. Such algorithms 
are usually based on some sort of smart data structures 
optimized for processing very long strings. In this paper we 
describe several software tools based on two popular 
techniques – dynamic programming and tree-like structures 
(generalized truncated suffix tree, vp-tree). Some of the 
described tools were presented in [40] and are available via 
web interface at mmcs.sfedu.ru/bio/ (Russian version).  

II. SEQUENCE ALIGNMENTS 

A. Problem Definition 
One of the most important bioinformatics problems is 

nucleotide sequence alignments [41],[42]. Global alignment 
is applied for the analysis of conservative parts of sequences, 
for pinpointing sequence relations and usually is the basic step 
in molecular phylogenetics inference [1]. The problem of 
pairwise global alignment can be stated as follows [2]: given a 
pair of sequences, build a two-row matrix such that the rows 
contain the characters of the sequences in order, interspersed 
with some spaces. Each alignment is assigned a numerical 
characteristic called 'score'. The score reflects the degree of 
similarity of the sequences. The problem is to build a 
maximum score alignment. The definition of the pairwise local 
alignment problem is essentially similar to the definition of 
global alignment, but the goal is to find a pair of substrings, 
one in each sequence, that maximizes the score. Local 
alignment is used for detection of similar fragments within 
functionally related sequences. A number of dynamic 
programming algorithms have been designed to find global 
(Needleman-Wunsch algorithm [3]) or local alignments (Goad 
and Kanehisa [4], Sellers [5], Smith and Waterman [3], 
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Waterman and Eggert [6], Hall and Myers [7]). There are fast 
local alignment algorithms, such as BLAST [8] reducing the 
amount of alignment time at the cost of exactness. 

  

B. Global Alignments 
Our package includes several alignment procedures. The 

basic data structure of dynamic programming algorithms is 

similarity matrix. A similarity matrix is an (m+1) by (n+1) 
matrix where m and n are the lengths of the sequences to be 
aligned. Such model presents serious challenges for efficient 
parallel execution on present computers.  

The basic idea of our algorithm is to divide the similarity 
matrix into blocks and then apply anti-diagonal approach. This 
algorithm uses less amount of memory than Needleman-
Wunsch algorithm, as it does not save the similarity matrix as 
a whole. Another our procedure for global alignment is based 
on [13] and the hyperplanes method [14]. It performs 
alignment faster than Hirschberg’s algorithm [3] and uses less 
memory than Needleman-Wunsch algorithm. We have 
performed a quantitative comparison of the two designed 
algorithms and other dynamic programming algorithms for 
optimal pairwise global alignment: Needleman-Wunsch, 

Hirshberg’s algorithms and Myers and Miller algorithm [15], 
as well as other alignment tools: EMBOSS Stretcher [16], 
based on rapid modification of Myers and Miller algorithm, 
and Ngila [17], implementing a classic Miller and Myers 
algorithm.  We used an Intel(R) Core(TM) i7 CPU @ 1.6 GHz 
computer with 4 GB RAM and 4 cores.  

Tables 1 and 2 summarize the results of the tests. The 
columns correspond to algorithms: 'H' for Hirshberg’s 
algorithm, 'NW' for Needleman-Wunsch algorithm, 'ES' for 
Emboss Strecher and 'N' for Ngila algorithm. The columns 
'PAOM', 'PBAOM' and 'PB' correspond to procedures within 
our package: parallel algorithm with optimal memory usage, 
parallel block algorithm with optimal memory usage and 
parallel block algorithm respectively.

  
Table 1. Calculation times for global alignment procedures 

Seq. 
length 
(bp) 

Time (s)  
H NW ES N PAOM PBAOM PB 

2753 
2517 

0.4 0.2 0.082 0.27 0.3 0.2 0.1 

8376 
7488 

3.3 1.3 0.53 2.41 1.2 0.8 0.5 

26803
2 

23961
6 

2015.7 out of memory 584.9 14109 639.0 362.7 171.1 

Table 2. Memory usage for global alignment procedures 

Seq. length 
(bp) 

Memory usage (Mb) 
H NW ES N PAOM PBAOM PB 

2753 
2517 

0.7 27.0 3.95 13.9 1.3 1.4 1.4 

8376 
7488 

0.9 240.0 4.2 121.3 2.9 3.0 5.4 

268032 
239616 

11.2 out of 
memory 

11.6 240.4 66.0 67.0 493.2 

 
The results in Table 1 show that the block algorithm is faster 
than Needleman-Wunsch algorithm by ~60% and Hirshberg’s 
algorithm by ~80% on tested sets. The table shows that the 
block algorithm is faster than EMBOSS Stretcher by ~30%.  
The parallel block algorithm with optimal memory usage 
aligns long sequences faster than EMBOSS Stretcher by 40% . 
Ngila tool is considerably slower comparing with designed 

algorithms. 
The memory usage comparison is presented in Table 2. The 

table shows that the parallel block algorithm with optimal 
memory usage requires less amount of memory than 
Needleman-Wunsch algorithm. The parallel block algorithm is 
more memory efficient than Ngila tool. The designed 
algorithms are more memory intensive than EMBOSS 
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Stretcher. 

C. Local Alignments 
The parallel block procedure for local alignment is based on 

the Smith-Waterman algorithm combined with block division 
and anti-diagonal approach. The Parallel Block Local 
Alignment Algorithm with optimal memory usage is a 
combination of parallel block local alignment algorithm and 
the parallel block global alignment algorithm with optimal 
memory usage, discussed above. 

 
We have compared the running time and memory usage of 

two presented algorithms and other algorithms for optimal 
local pairwise alignment, such as Smith-Waterman and 
Waterman-Eggert algorithms, as well as other alignment tools: 

EMBOSS [16] Water, which uses the Smith-Waterman 
algorithm (modified for speed enhancements), and EMBOSS 
Matcher, based on Bill Pearson's LALIGN application. The 
experiments were performed on Intel(R) Core(TM) i7 CPU @ 
1.6 GHz computer with 4 GB RAM and 4 cores. The results of 
running time testing are presented in Table 3.  

 

 
Table 3. Calculation times for local alignment procedures  

Seq. length 
(bp) 

Time (s) 
SW PBOM PB EW EM 

2753 
2517 

0.28 0.14 0.06 0.42 0.80 

8376 
7488 

0.61 0.60 0.27 5.05 3.19 

268032 
239616 

out of memory 586.29 231.18 out of memory 2205.91 

 

 
The columns correspond to the algorithms being compared: 

SW – Smith-Waterman, PBOM - Parallel Block algorithm 
with optimal memory usage, PB – Parallel Block algorithm, 
EW – EMBOSS Water and EM – EMBOSS Matcher. The 
table shows that both designed algorithms are faster than 
Smith-Waterman algorithm, the parallel block algorithm is 
faster than EMBOSS Water by ~95% and Matcher by ~90% 
on testing sets. The parallel block algorithm with optimal 
memory usage decrease the time of local alignment as 
compared to EMBOSS tools by 80%. 

Table 4 reflects the memory usage of local alignment 
algorithms under study. The results of experiments show that 
EMBOSS Water, as Smith-Waterman algorithm, is memory 
intensive. The EMBOSS Matcher uses less amount of memory 
than Smith-Waterman and parallel block algorithms. However, 
Matcher tool is more memory intensive than parallel block 
local alignment algorithm with optimal memory usage on short 
sequences. 

 

Table 4. Memory usage for local alignment procedures 

Seq. length 
(bp) 

Memory Usage (Mb) 

SW PBOM PB EQ EM 

2753 
2517 

53.63 2.09 1.51 56.86 4.19 

8376 
7488 

479.59 3.78 3.92 482.29 4.71 

268032 
239616 

Out of memory 108.15 155.91 Out of memory 21.84 

III. TREE-BASED PROCEDURES 
A number of problems in bioinformatics can be formulated 

in form of seacrhing a genomic sequence for occurences of a 
short pattern or looking for frequent patterns under some 
conditions. It is known [3] that many of such problems can be 
solved efficiently using tree-based data structures. We have 
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implemented several efficient procedures base on suffix trees 
and vp-trees. 

A. Pattern Search 
The suffix tree module of presented bioinformatics package 

is responsible for solving several problems. Exact and inexact 
pattern search, palindrome search and motif discovery are 
among them. All of these problems deal with long sequences 
of characters of a fixed alphabet ({A,C,G,T} for DNA 
sequences). The huge amounts of data in bioinformatics 
require special data structures to be used for providing 
admissible performance. Among such data structures, suffix 
trees are considered as most appropriate. We have 
implemented several variants of suffix tree structure. The 
experiments show that truncated generalized suffix tree 
provides the best performance improvement for pattern search 
(both exact and inexact) and motif discovery problem, whereas 
for the palindrome search it does not give any speedup [18]. 
The truncation of tree may be useful for searching specific 
subsequences in a set of longer sequences [19]. There are 
different approaches for generalized suffix tree implementation 
[20], but we have designed a new modification that improves 
search time in a few cases. Our approach is based on branch 
and bounds method and could considerably reduce space and 
time requirements for specific problems.  We have proposed a 
modification for Ukkonen suffix tree construction algorithm 
[21]. Two additional rules were suggested for decreasing both 
space and build time. These rules handle cases when maximum 
depth is reached for nodes. Our procedure uses special rules 
for updating information in leaf nodes as well. 

As far as there are a few publicly available implementations, 
we have compared the results of our implementation with 
several software tools (MUMMER [22], SUDS [23], ERa 
[24]). The comparison demonstrates that our procedures either 
have a speedup or provide more functionality at the same 
speed. As an example, Table 5 shows that for exact pattern 
search our procedure has time complexity approximately equal 
to Mummer suffix tree procedure which has been declared to 
be the fastest tool for this problem [22]. Our suffix tree 
procedure has the additional ability of searching occurrences 
with mismatches. Results in Table 6 demonstrate some time 
parameters for our inexact search procedure. 

Table 5. The times for exact pattern search 

Sequence 
count/ length 

Patterns 
count/ length 

Mummer (s) Our package 
(s) 

1000/5000 100000/10 3.61 4.48 
1000/5000 100000/30 6.82 4.21 

1000/100000 100000/10 19.57 25.70 
1000/100000 100000/30 23.11 20.21 

Table 6. Time parameters for inexact pattern search 

Sequence 
count/ length 

Patterns count/ 
length 

Number 
mismatches 

Running time 
(s) 

1000/5000 100/10 2 531.5 
1000/5000 100/10 5 981.6 

1000/100000 10/30 2 255.1 
1000/100000 10/30 12 935.1 

 

B. Motif Discovery 
Search of regulatory sequences seems to be one of the most 

important task taking into account the data about non-coding 
genome regulatory roles obtained due to ENCODE project [9]. 
This problem could be formulated as a motif discovery 
[10]. The motif of choice even if it is known, however, could 
be subjected to changes and variation leading to other task of 
pattern search (inexact) for relatively huge DNA datasets in 
order to find genes joint together into regulatory loop. 

Motifs are defined as sequence fragments (patterns) whose 
occurrences in a given set of sequences are statistically 
significant. The difference between motif discovery and 
pattern search problems is that in motif discovery problem the 
motif (pattern) is not given but should be found ('discovered') 
as the solution.  

There are several mathematical models for motif discovery 
problem, and different algorithms and software tools tend to 
use different models. We have used three models, 
implemented in two software tools within the package. One 
tool searches a set of biosequences for frequent substrings 
under certain conditions (see also [43],[44]). The second tool 
is based on a novel model of generalized motifs, which allows 
the researcher to account for all or some of the motifs’ features 
— similarity (conservativeness), frequency and locality. The 
third one searches for dimers — motifs which consist of two 
parts (blocks) located at a certain distance from each other. 
 
Frequent motifs 

This tool looks for exact (not heuristic) solutions of the 
following problem: given a positive set of sequences S = {S1, 
…, Sn} and a negative (or control) set C = {C1, …, Cm}, find 
all strings (motifs) of length between Lmin and Lmax such that 
each of the motifs occurs at least in QP positive sequences and 
in no more than QN negative sequences. The motif discovery 
module of our package uses truncated suffix tree [37] for 
speeding up calculations. 

We have compared the performance of our module and the 
software tool MERCI [25] which uses similar motif discovery 
model. The results are shown in Table 7. All experiments were 
performed on dataset with 1000 positive and 10 negative 
sequences of length 1000, the variated parameters were 
quorums (QP and QN). 

Table 7. The times for motif discovery (motif lengths: 10 – 30) 

QP QN MERCI (s) Our package 
(s) 

100 1 130.91 5.92 
500 1 36.14 5.85 

1000 1 8.46 5.66 
100 5 165.21 5.79 
500 5 37.57 6.61 

1000 5 11.49 5.78 
100 10 164.11 6.70 
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500 10 34.41 5.91 
1000 10 14.12 5.64 

 
Generalized motifs.  

Genomic motifs are characterized by several feactures, the 
most significant of them are conservativenes (the degree of 
similarity of occurrences of the motif), the number of 
occurrences of motif in the given biosequences, and the 
localization (occurrences of a motif are often localized in a 
particular region of DNA) [34]. The models and algorithms 
used before for motifs discovery focus just on one or two of 
these characteristics. 

The authors have developed [35] a novel model which 
generalizes all three characteristics of motifs, developed 
algorithms and software for searching such generalized motifs. 
The model is based on the occurrence indicator of the motive 
P in the nucleotide sequence S which is defined as follows: 
  OI(P,S) = F({w(j) *  
    score(P, substr(S,j,l)): j=1,…, |S|-l+1})      (1) 

Where l is the length of the motif P; substr (S, j, l) denotes 
the substring S starting at position j and having length l, and w 
(j) represents weighting coefficients defining an expected 
motif’s localization. The function score(...) quantitatively 
evaluates the similarity of a motif to a given substring, and the 
function F(...) takes a set of numbers as its argument. It was 
shown that the model covers the most commonly used motif 
models for appropriate selections for score(…) and F(…).  

It is also shown that the developed algorithm can be easily 
modified to find dimers - structural motifs consisting of two 
parts arranged at a predetermined distance from each other. 

For this generalized model for motifs discovery we 
developed fast algorithms for motif discovery and evaluation 
(calculating occurrence indicator). These algorithms are 
independent of the specific choice of model parameters and 
use Position Specific Scoring Matrix (PSSM) as a motif 
representation. The motif discovery algorithm is based on the 
Gibbs sampling method [36] and utilizes truncated generalized 
suffix trees [37] for speeding up processing. The algorithm for 
calculation occurrence indicator is outlined below. 
1. Given the set of sequences {si: i=1,…,k}, ,,s-

i.:i=1,…,k.construct the generalized suffix tree T 
truncated to depth l=|p| [37]. 

2. For a vertex v in the tree T let λ (v) denote the path-label 
of v [3], i.e. the concatenation of the labels of arcs along 
the path from the root of the tree to the vertex v. For each 
leaf v let L (v) denote a list consisting of pairs of the form 
(i, j) where i is the sequence’s ID (number), j is the 
position of occurrences of λ (v) in the i-th sequence). 

3. For each leaf of v in T, calculate values wi(v) as follows: 

( , ) ( )
( ) ( )i

i j L v
w v w j

∈

= ∑  

4. For all j calculate Qj(p) (occurrence indicator of p in the 
i-th sequence) applying operation F to the set of products 
w(v)*score(p, λ (v))  for all the leaves.  

 
In the software implementation formula (1) was represented 

in the form: 

1
* ( ( ), ) * ( , ) * ( )

k

i l j
i

Q S pattern i p f x w vα β µ γ
=

= + + ∑   (2) 

Here α, β, γ are parameters specified by the user according 
to the biological problem, S is similarity function that 
implements a basic algorithm of Gibbs sampling, function f  
evaluates a putative motif with respect to its location in the set. 
The last summand describes the number of occurrences of a 
pattern in a set of DNA sequences. 

Computational experiments have shown that the developed 
algorithms provide significant acceleration and thus allow 
discovering the desired motifs with high sensitivity and 
specificity. Comparison of the efficiency of described method 
using the truncated suffix tree and the naïve search algorithm 
following table illustrates. 

Table 8.  The times for generalized motif discovery 

Sequence 
count/ length 

Patterns 
count/ length 

Suffix tree 
(ms) 

Naive (s) 

100/100 100/4 451 1.203 
100/100 1000/4 2111 61.191 
100/100 10000/4 10523 560.040 
100/100 100/8 677 1.080 
100/100 1000/8 3507 54.149 
100/100 10000/8 19936 538.764 

 
 

Dimers. 
Dimer is a motif consisting of two separate parts called 

‘boxes’. The distance between boxes is usually fixed for a 
given dimer but can be unknown in advance. Dimers are 
special cases of a more general notion of structured of 
structural motifs [38].  

A structural model of the motif in general can be described 
by a pair (m, d) where m is a p-tuple of single models 

1( ,..., )pm m  (the p boxes); d is a (p-1)-tuple of triplets 

1 1 1 1min max 1 min max 1(( , , ),..., ( , , ))
p p pd d d dσ σ

− − − , i.e. (p-1)-
intervals of distance. 

We developed and implemented an algorithm based on 
Gibbs sampling which discoveries dimers. The formal 
statement of the problem is as follows. 

Given a set of sequences { , 1.. }js j k= , each consisting of 
n nucleotides, we seek for dimers such that the lengths of 

boxes (m1 and m2) are equal to 1L  and 2L  respectively and 
the distance between the boxes is within the given limits 

mind and maxd .  
Let us rewrite the formula (2) for each box of the dimer (t = 

1,2) and fixed line z, selected at random during the execution 
of the algorithm. Add an additional term, which will be 
responsible for assessing the distance between the boxes:   

1
* ( ( ), ) * ( , ) * ( ) ( )

t

k
t
i L j t

i
Q S pattern i p f x w v g iα β µ γ

=

= + + +∑ , 
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where ( ) ( )
tLv pattern iλ = , 0.. 1ti n L= − + , { , 1.. }ja j k=  

and { , 1.. }jb j k=   are positions of boxes in each sequence at 
the current iteration of the algorithm. 

One possible choice for the function responsible for the 
evaluation of the distance between the boxes is as follows: 

1 max 1 min
max min1

1 max 1 min

1 [ ; ]
1( )

0 [ ; ]

z z

z z

i b L d b L d
d dg i

i b L d b L d

 ∈ − − − − − += 
 ∉ − − − −

, 

1 min 1 max
max min2

1 min 1 max

1 [ ; ]
1( )

0 [ ; ]

z z

z z

i a L d a L d
d dg i

i a L d a L d

 ∈ + + + − − += 
 ∉ + + + −

, 

Thus, the basic algorithm of Gibbs sampling was modified 
for structured motif (dimer) discovery in the set of DNA 
sequences by adding the second matrix PSSM Q2, 
corresponding to a second box in the structure of the motif. 
This model can be generalized to discover structured motifs 
with arbitrary number of boxes. 

The test results of the algorithm for the model 

1 1min max( 2, 5)d d= = are in the following table. 

Table 9.  The times for dimer motif discovery 

Sequence 
count/ length 

Length m1  / 
length m2 

Count of 
iterations 

Time(s) 

100/100 4/4 1 0.015 
100/100 4/4 1000 12.422 
100/100 8/8 1 0.027 
100/100 8/8 1000 24.268 
100/100 16/16 1 0.042 
100/100 16/16 1000 41.950 
100/100 4/16 1000 36.376 
100/100 8/16 1000 30.771 
100/100 4/8 1000 29.379 

 

C. Locating Origin of Replication 
Search for origin of replication in genome of enterobacteria 

is a topical but still unsolved bioinformatics problem [32]. The 
problem is to find a region (the origin of replication) within the 
specified area of the genome. A putative origine of replication 
should contain other sub-sequences (DNA boxes) repeated a 
number of times. In addition, an origin of replication should 
satisfy the following conditions: 

1. Replication origin is located in an AT-rich (GC-poor) 
area. 

2. Length of replication origin of bacteria ranging from 100 
to 1000 bp. 

3. The amount of DNA boxes varies from 2 to 5 repeats on 
one helix (4 to 10 in two, respectively). 

4. The length of DNA boxes varies from 6 to 16 bp. 
5. Occurrences of a DNA-box can have up to two 

mismatches. For example: ATTGCA, AATGGA are two 
occurrences of the same DNA box with 2 mismatches. 

We have developed a program for locating putative origins 
of replication. This program takes a sequence (genome) and 

expected length of DNA boxes, and returns the position of 
putative replication origin and the list of putative DNA boxes. 

The method for locating origin of replication is based on 
locating AT-rich area and then searching for the minimum at 
the GC-skew diagram for this area. For a candidate region we 
then should determine putative DNA boxes. Since these boxes 
are not known in advance, this is the most time-consuming 
stage of the algorithm. A naïve algorithm uses brute force to 
check all possible substrings of length l. This algorithm has 
time complexity O(l•N2). To speed up this operation, we 
implemented a procedure based on special data structure VP-
tree [39]. This structure is a special case of metric trees and 
allows for fast processing neighbors in a metric space. The 
VP-tree based procedure has time complexity O(l•N•logN).  

In Table 11 and Table 12 we have compared performances 
of our algorithm and the naïve exhaustive search. In Table 12 
we present the results of the program in some genomes. 

 
Table 10. Comparing the performance of algorithms relative to the 

length of box 
Length of DNA 
box  (symbols)  

Exhaustive 
search (s) VP-tree (s) 

6 
7 

0.089 
0.106 

0.106 
0.123 

8 0.127 0.151 
9 0.153 0.166 

10 0.173 0.173 
11 0.196 0.181 
12 
13 

0.216 
0.232 

0.194 
0.198 

14 0.247 0.206 
15 0.262 0.221 
16 0.439 0.272 

 
Table 11. Comparing the performance of algorithms relative to the 

length of the input sequence 
Length of sequence 

N (symbols) 
Exhaustive 
search (s) VP-tree (s) 

1000 0.153 0.166 
2000 0.634 0.505 
5000 3.936 2.835 

10000 15.689 8.767 
20000 62.502 29.283 
50000 391.661 143.741 

 
 

Table 12. The results of the program for the various datasets 
Species Found DNA boxes Known DNA boxes 

E.Coli TTATCCACA 
TGTGGATAA 

TTATCCACA 
TGTGGATAA 

Vibrio cholerae CTTCATGAT   
ATCATGAAG 

CTTGATCAT 
ATGATCAAG 

Salmonella 
enterica 

GGATCCTGG   
CCAGGATCC 

- 
 

 
We have compared our program to similar programs: 

Oriloc, GC-software, Z-curve, GraphDNA, OriFinder [33].  
Almost all analogs only make assumptions based on various 
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diagrams, including GC-skew. In Table 13 we compare the 
functionality of the programs. 

Table 13. Comparing the programs' functionality 
Program DNA box Using diagram 

Oriloc - GС-skew 
TA-skew 

CDS-skew 
GC-software - GC-skew   

TA-skew 
DNA-walk 

Z-curve 
 

- 
 

(A+G)-(C+T)-skew 
(A+C)-(G+T)-skew 
(A+T)-(C+G)-skew 

Z-curve 
GC-skew 
AT-skew 
AC-skew 

(A+G)-(C+T)-skew 
(A+C)-(G+T)-skew 

GС-skew 
TA-skew 
RY-skew 
MK-skew 
GС-skew 

GraphDNA - 

OriFinder* + 

Our program + 

* To search for DNA-box user needs to make a guess about its form. 
 
Source code of program for searching for an origin of 

replication can be obtained for free from the github: 
https://github.com/zeratul47/searching-an-origin-of-
replication- 

IV. DEGENERATE PRIMER DESIGN 
Degenerate primers are an important component of the 

polymerase chain reaction (PCR). It is widely used for various 
biotechnological applications. Such approach is useful for 
identifying bacteria in metagenomic studies, in particular for 
pathogen research [27]. Also, polymerase chain reaction 
allows solving various problems in molecular phylogeny 
(within defined taxa), for example, search for portions of the 
variable domains of proteins from related organisms. 
Moreover, PCR can be used for the discovery of new genes 
and even of new genomes from samples [45, 46].  Also, for a 
successful reaction and getting high quality product we must 
take into account a number of biological parameters [47, 48].  
Wrong selection of these parameters can negatively affect the 
reaction and its results. 

We have developed a program for searching pairs of 
degenerate primers. The importance and value of the 
parameters may vary depending on the task. So, the user is 
given the ability to change them and control the search process 
at all stages. For example, he/she can choose the algorithm for 
minimization of the degeneracy of primers under condition of 
covering all input sequences. Another option is searching for 
primers covering maximum number of input sequences under 
condition that the degeneracy does not exceed the specified 
value [28]. To improve performance of each algorithm we 
have introduced some heuristics caused by biological aspects 
or revealed as a result of testing. The output of the program is 

a few primer pairs. This allows the user to choose the most 
suitable pair of primers. 

V. PLANS FOR FUTURE DEVELOPMENT 
Sequences of one species could be searched for SNPs 

(single nucleotide polymorphisms) or other type of mutations 
allowing creating mutational profile distinguishing species 
from another one. It could help in solving problems of 
biological classification, for instance, of pathogenic bacteria 
[30]. We are in progress with development of a program 
making a mutational profile for species or other taxonomic 
groups using a database with specific sequence marker defined 
computationally or by user. The other program application is 
the convenient graphical interface with sequence specific 
mutations pointed out against reference. 

Suffix tree based procedures suffer from excessive memory 
requirements. Thus, reducing memory complexity while 
preserving the option of inexact pattern search is an urgent 
issue in our plans. There a several approaches addressing this 
problem, and ‘compressed suffix tree’ [31] looks promising 
enough. In addition, in the next version of the package we plan 
to implement switching between truncated tree and sparse 
suffix tree according to patterns size. It seems to improve 
suffix tree pattern search, both for exact and inexact cases. 
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